Mg coordination by amino acid side chains is not required for assembly and function of the special pair in bacterial photosynthetic reaction centers.
نویسندگان
چکیده
A conserved histidine serves as the axial ligand to the Mg of bacteriochlorophylls in the photosynthetic reaction center (RC) and many other photosynthetic systems. The histidine axial ligands to each and both bacteriochlorophylls of the special-pair primary electron donor of the Rhodobacter sphaeroides RC have been replaced with glycine to create a cavity. In each case, RCs assemble and a normal special-pair comprised of Mg-containing bacteriochlorophylls is formed, as judged by many different spectroscopic and functional probes (e.g., absorption and Stark spectra, *P decay kinetics, P+Q(A)- recombination rate, and the redox potential of P). In contrast with heme proteins, where this strategy has been exploited to introduce exogenous organic ligands that can greatly affect the functional properties of the protein [DePillis, G. D., Decatur, S. M., Barrick, D., & Boxer, S. G. (1994) J. Am. Chem. Soc. 116, 6981-6982], addition of exogenous imidazole, pyridine, and ethanethiol has no measurable effect on the functional properties of the special pair in these cavity mutants. FT-Raman spectroscopy is used to provide more detailed information on local interactions around the special pair. Data in the core-size marker mode and carbonyl stretching region suggest that an adventitious ligand replaces histidine as the axial ligand to bacteriochlorophylls in the cavity mutants. We speculate that this ligand is water. Furthermore, the position of the core-size marker mode changes when the cavity mutant RCs are incubated with exogenous ligands such as imidazole, pyridine, or ethanethiol, suggesting that the axial ligand to the special pair BChls can be exchanged in the cavity mutants. Interestingly the temperature dependence of P+Q(A)- recombination kinetics is very similar in the cavity mutants and WT, suggesting that the axial ligands to the special pair are not significant contributors to the solvent reorganization energy for this reaction. These results lead to the surprising conclusion that the nature of the axial ligand to the special pair has little influence on the properties of the macrocycle, and that axial coordination from the protein by histidine is not required for bacteriochlorophyll binding or for efficient electron transfer in the RC.
منابع مشابه
Oscillations in the Spontaneous Fluorescence from Photosynthetic Reaction Centers
The spontaneous fluorescence from the special pair primary electron donor in bacterial photosynthetic reaction centers has been measured at low temperature using fluorescence up-conversion following excitation of the special pair with 80 fs pulses from a mode-locked Ti:sapphire laser. Oscillations are observed during the first few picoseconds of the decay. The frequency of the oscillations and ...
متن کاملIntervalence Band Stark Effect of the Special Pair Radical Cation in Bacterial Photosynthetic Reaction Centers
The Stark spectrum of the intervalence band of the special pair radical cation in bacterial photosynthetic reaction centers is presented. This spectrum, centered at 2600 cm-1, is modeled using a general treatment of intervalence band Stark effects based on a two-state vibronic coupling model of mixed-valency. The observed line shape can be predicted using values for the electronic coupling, dri...
متن کاملExcited-state energy transfer pathways in photosynthetic reaction centers: 5. Oxidized and triplet excited special pairs as energy acceptors
In bacterial photosynthetic reaction centers, ultrafast singlet excited-state energy transfer occurs from the monomeric bacteriochlorophylls, B, and bacteriopheophytins, H, to the homodimer special pair, P, a pair of strongly interacting bacteriochlorophylls. Using fluorescence upconversion spectroscopy, energy transfer to the special pair can be monitored by observing the decay of B emission a...
متن کاملExcited-state electronic asymmetry of the special pair in photosynthetic reaction center mutants: absorption and Stark spectroscopy.
The electronic absorption line shape and Stark spectrum of the lowest energy Q(y)() transition of the special pair in bacterial reaction centers contain a wealth of information on mixing with charge transfer states and electronic asymmetry. Both vary greatly in mutants that perturb the chemical composition of the special pair, such as the heterodimer mutants, and in mutants that alter interacti...
متن کاملExcited State Energy Transfer Pathways in Photosynthetic Reaction Centers. 4. Asymmetric Energy Transfer in the Heterodimer Mutant
In bacterial photosynthetic reaction centers, ultrafast singlet excited state energy transfer occurs from the monomeric bacteriochlorophylls, B, and bacteriopheophytins, H, to the homodimer special pair, a pair of strongly interacting bacteriochlorophylls. In the M202HL mutant, one of the bacteriochlorophylls comprising the special pair is replaced by a bacteriopheophytin, and this is called th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 35 7 شماره
صفحات -
تاریخ انتشار 1996